您当前所在位置:
首页 方法技巧 彩票数学知识讲座(五)

彩票数学知识讲座(五)

无江夏芒 8736 2010-03-14 11:12

排列数的计算公式

    前面两讲中我们讨论的是一些比较简单的排列问题,可以用穷举的方法来解决。但对于一些相对较复杂的问题,就不能这样做了,需要根据具体的计算公式来解答。

    定义3:从n个不同元素中,任取m (m<=n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号P(m,n) 表示。

例如:从5个不同元素中取出3个元素的排列数表示为P(3,5)。求排列数P(m,n)可以这样考虑:设有n个元素m1,m2,...,mn 从其中先任选1个元素排在第一个位置,因为m1,m2,...,mn中任选1个都可以,所以有n种方法;排在第二个位置的元素,是除了选作第一位的元素以外的n-1个元素中再任选一个,所以有n-1种方法;这样下去,选第三个,第四个......第m个位置的元素的方法,数目分别是n-2,n-3,...,n-(m-1)。根据乘法原则,它们的总数是这m个排列方法的数目的积,即n(n-1)(n-2)*...*(n-m+1),所以P(m,n)=n(n-1)(n-2)*...*(n-m+1)。这里m<=n。

这就是说,从n个元素中每次取出m个元素,所有的排列总数等于m个连续自然数的积,其中最大的一个数是n,这个公式叫做排列数公式。当m=n时,叫做n个不同元素的全排列。

    排列的概念:

    关于排列,我们先看下面的例子:

    例:由数字1,2,3,4可以组成多少个没有重复数字的三位数?

    解:题中所指“没有重复数字”就是三位数中的三个数字不能是同一数字。根据题意。

    第一步,先确定百位上的数字。在1,2,3,4这四个数字中任取一个,共有4种方法;假设我们取3作为百位数。

    第二步,确定十位上的数字。当百位上的数字确定以后,十位上的数字只能从余下的三个数字中1,2,4中去取,共有3种方法;假设我们取2作为十位数。

    第三步,确定个位上的数字。当百位、十位上的数字都确定以后,个位上的数字只能从余下的两个数字1和4中去取,共有2种方法。

根据乘法原理,从四个不同的数字中,每次取出三个排成三位数的方法共有 4×3×2=24 种。就是说,共可以排成24个不同的三位数。

定义1:一般地说,从n个不同元素中,任取m (m<=n)个元素(这里只研究被取出的元素各不相同的情况),按照一定的顺序排成一列,叫做从n个不同元素中取出个m元素的一个排列。

    从排列的定义知道,如果两个排列相同,不仅这两个排列的元素相同,而且排列的顺序也必须完全相同。如果所取的元素不完全相同,如问题中的三位数“123”和“321”,虽然它们的元素相同,但排列顺序不同,也是两个不同的排列。